About NFS
Network File System (NFS), developed by Sun Microsystems, serves a similar purpose to SMB, enabling access to file systems over a network as if they were local. NFS is primarily used between Linux and Unix systems, preventing direct communication between NFS clients and SMB servers. While NFSv3, which has been widely adopted, authenticates client computers, NFSv4 introduces a change, similar to the Windows SMB protocol, requiring user authentication. A notable advantage of NFSv4 over its predecessors is its simplicity in utilizing only one UDP or TCP port (2049), which simplifies the protocol’s use across firewalls.
Version | Features |
---|---|
NFSv2 | It is older but is supported by many systems and was initially operated entirely over UDP. |
NFSv3 | It has more features, including variable file size and better error reporting, but is not fully compatible with NFSv2 clients. |
NFSv4 | It includes Kerberos, works through firewalls and on the Internet, no longer requires portmappers, supports ACLs, applies state-based operations, and provides performance improvements and high security. It is also the first version to have a stateful protocol. |
NFS is based on the Open Network Computing Remote Procedure Call (RPC) protocol, which is available on ports and . It utilizes External Data Representation (XDR) for the system-independent exchange of data. The NFS protocol incorporates a mechanism for authentication, but instead of handling this directly, it relies entirely on the options provided by the RPC protocol for authentication purposes.
Here is how you would share a folder to the subnet 10.129.14.0/24.
root@nfs:~# echo '/mnt/nfs 10.129.14.0/24(sync,no_subtree_check)' >> /etc/exports
root@nfs:~# systemctl restart nfs-kernel-server
root@nfs:~# exportfs
/mnt/nfs 10.129.14.0/24
nmap scanning
Scan ports 111 and 2049
sudo nmap 10.129.14.128 -p111,2049 -sV -sC
Starting Nmap 7.80 ( https://nmap.org ) at 2021-09-19 17:12 CEST
Nmap scan report for 10.129.14.128
Host is up (0.00018s latency).
PORT STATE SERVICE VERSION
111/tcp open rpcbind 2-4 (RPC #100000)
| rpcinfo:
| program version port/proto service
| 100000 2,3,4 111/tcp rpcbind
| 100000 2,3,4 111/udp rpcbind
| 100000 3,4 111/tcp6 rpcbind
| 100000 3,4 111/udp6 rpcbind
| 100003 3 2049/udp nfs
| 100003 3 2049/udp6 nfs
| 100003 3,4 2049/tcp nfs
| 100003 3,4 2049/tcp6 nfs
| 100005 1,2,3 41982/udp6 mountd
| 100005 1,2,3 45837/tcp mountd
| 100005 1,2,3 47217/tcp6 mountd
| 100005 1,2,3 58830/udp mountd
| 100021 1,3,4 39542/udp nlockmgr
| 100021 1,3,4 44629/tcp nlockmgr
| 100021 1,3,4 45273/tcp6 nlockmgr
| 100021 1,3,4 47524/udp6 nlockmgr
| 100227 3 2049/tcp nfs_acl
| 100227 3 2049/tcp6 nfs_acl
| 100227 3 2049/udp nfs_acl
|_ 100227 3 2049/udp6 nfs_acl
2049/tcp open nfs_acl 3 (RPC #100227)
MAC Address: 00:00:00:00:00:00 (VMware)
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 6.58 seconds
Use the rpcinfo NSE script.
sudo nmap --script nfs* 10.129.14.128 -sV -p111,2049
Starting Nmap 7.80 ( https://nmap.org ) at 2021-09-19 17:37 CEST
Nmap scan report for 10.129.14.128
Host is up (0.00021s latency).
PORT STATE SERVICE VERSION
111/tcp open rpcbind 2-4 (RPC #100000)
| nfs-ls: Volume /mnt/nfs
| access: Read Lookup NoModify NoExtend NoDelete NoExecute
| PERMISSION UID GID SIZE TIME FILENAME
| rwxrwxrwx 65534 65534 4096 2021-09-19T15:28:17 .
| ?????????? ? ? ? ? ..
| rw-r--r-- 0 0 1872 2021-09-19T15:27:42 id_rsa
| rw-r--r-- 0 0 348 2021-09-19T15:28:17 id_rsa.pub
| rw-r--r-- 0 0 0 2021-09-19T15:22:30 nfs.share
|_
| nfs-showmount:
|_ /mnt/nfs 10.129.14.0/24
| nfs-statfs:
| Filesystem 1K-blocks Used Available Use% Maxfilesize Maxlink
|_ /mnt/nfs 30313412.0 8074868.0 20675664.0 29% 16.0T 32000
| rpcinfo:
| program version port/proto service
| 100000 2,3,4 111/tcp rpcbind
| 100000 2,3,4 111/udp rpcbind
| 100000 3,4 111/tcp6 rpcbind
| 100000 3,4 111/udp6 rpcbind
| 100003 3 2049/udp nfs
| 100003 3 2049/udp6 nfs
| 100003 3,4 2049/tcp nfs
| 100003 3,4 2049/tcp6 nfs
| 100005 1,2,3 41982/udp6 mountd
| 100005 1,2,3 45837/tcp mountd
| 100005 1,2,3 47217/tcp6 mountd
| 100005 1,2,3 58830/udp mountd
| 100021 1,3,4 39542/udp nlockmgr
| 100021 1,3,4 44629/tcp nlockmgr
| 100021 1,3,4 45273/tcp6 nlockmgr
| 100021 1,3,4 47524/udp6 nlockmgr
| 100227 3 2049/tcp nfs_acl
| 100227 3 2049/tcp6 nfs_acl
| 100227 3 2049/udp nfs_acl
|_ 100227 3 2049/udp6 nfs_acl
2049/tcp open nfs_acl 3 (RPC #100227)
MAC Address: 00:00:00:00:00:00 (VMware)
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 0.45 seconds
Mounting a NFS share
Once you have discovered a NFS service, mount it on your local machine.
First, show the available shares.
showmount -e 10.129.14.128
Export list for 10.129.14.128:
/mnt/nfs 10.129.14.0/24
Then mount it like this.
mkdir target-NFS
sudo mount -t nfs 10.129.14.128:/ ./target-NFS/ -o nolock
cd target-NFS
tree .
.
└── mnt
└── nfs
├── id_rsa
├── id_rsa.pub
└── nfs.share
2 directories, 3 files
Next, list contents with usernames and group names.
ls -l mnt/nfs/
total 16
-rw-r--r-- 1 cry0l1t3 cry0l1t3 1872 Sep 25 00:55 cry0l1t3.priv
-rw-r--r-- 1 cry0l1t3 cry0l1t3 348 Sep 25 00:55 cry0l1t3.pub
-rw-r--r-- 1 root root 1872 Sep 19 17:27 id_rsa
-rw-r--r-- 1 root root 348 Sep 19 17:28 id_rsa.pub
-rw-r--r-- 1 root root 0 Sep 19 17:22 nfs.share
Then list contents with UIDs and GUIDs.
ls -n mnt/nfs/
total 16
-rw-r--r-- 1 1000 1000 1872 Sep 25 00:55 cry0l1t3.priv
-rw-r--r-- 1 1000 1000 348 Sep 25 00:55 cry0l1t3.pub
-rw-r--r-- 1 0 1000 1221 Sep 19 18:21 backup.sh
-rw-r--r-- 1 0 0 1872 Sep 19 17:27 id_rsa
-rw-r--r-- 1 0 0 348 Sep 19 17:28 id_rsa.pub
-rw-r--r-- 1 0 0 0 Sep 19 17:22 nfs.share
If we have access to the system via SSH and want to read files from another folder that a specific user can read, we would need to upload a shell to the NFS share that has the SUID
of that user and then run the shell via the SSH user.
Unmounting a NFS share
Once you are finished, unmount the NFS share like this.
cd ..
sudo umount ./target-NFS